

Abstract

ARCADIA is a system & software architecture
engineering method, based on architecture-
centric and model-driven engineering activities.
It targets systems whose architecture is largely
constrained by issues such as performance,
safety, security. This paper emphasizes Arcadia
benefits on securing system definition and
verification, supporting collaborative work on
architecture, and technical relationships with
both customers and suppliers, along with
supporting tools issues.

1 Introduction

System Engineering of aerospace
electronic devices and systems (e.g. avionics,
flight or aircraft systems control, mission
computers…) is submitted to high constraints
regarding safety, security, performance,
environment, human factors and more; all of
these are under responsibility of different
stakeholders, yet deeply influence systems
architecture design and development, and are to
be reconciled in a relevant system architecture.

The approach described in this paper,

named ARCADIA (ARChitecture Analysis &
Design Integrated Approach), based on
architecture-centric and model-driven
engineering activities, aims at

• securing system definition and
verification,

• supporting collaborative work on
architecture,

• and easing fluid technical
relationships with both customers
and suppliers.

Some technical features of Arcadia

implementation have already been presented
(see [1], but this paper focuses on and details
more collaborative engineering issues.

Fig. 1. Support for collaboration in
architecture building

SharedShared
Architecture

Product Line
Managers

Architects

Requirement
Managers

Others…
Safety,
Performance,
… Engineers

Logistics
Engineers

SW/HW
Designers

& Developpers

Customers

IVVQ
Manager

2 Strengthening Product definition
thr ough Need analysis

The first contribution of Arcadia to
strengthening product definition comes from
formalization of need and strong linking with
product definition .

2.1 Need Analysis

All stakeholders concerned by system need
definition are supposed to be involved in the

METHOD & TOOLS TO SECURE AND SUPPORT
COLLABORATIVE ARCHITECTING OF CONSTRAINED

SYSTEMS

Jean-Luc Voirin
Thales Aerospace

Keywords: architecture modelling method early validation

Jean-Luc VOIRIN

2

following need definition process, while sharing
formalized need description.

Fig. 2. Collaboration in Need Analysis

SharedShared
Architecture

Product Line
Managers

Architects

Requirement
Managers

Customers

Formalizing Requirements through
functional and non-functional analysis

Requirements are captured and validated,
not only in a text-oriented database as usually,
but also formalized in a functional (e.g. see [3])
and non-functional need analysis model:

• each textual requirement, is
interpreted so as to identify functions
expected from the system, along
with data or information to be
used/elaborated, and related
exchanges between functions
Example: the requirement “the
collision avoidance system shall sort
and display traffic according to
altitude difference” will lead to
defining functions such as ‘detect
traffic’, ‘compute traffic altitude’,
‘compute altitude difference with
aircraft’, ‘sort traffic by altitude
difference’, ‘display traffic in risk of
collision’. Data such as ‘detected
aircraft in traffic’, ‘aircraft altitude’,
will be identified, and be subject to
exchanges between former functions.

• Non-functional constraints are
identified and allocated to the
functional analysis
Example: the requirement “latency
between traffic detection and alert
display shall not exceed xxx
milliseconds” will be allocated to a
‘functional chain’ covering functions
identified above. Safety constraints
could also be added as needed (e.g.

criticity level of each functional
chain, feared events…)

• Traceability and justification links
are maintained between requirements
and functional analysis

Analyzing end user needs and operational
use of the system

Beside requirements, a complementary
analysis is driven on operational needs and
formalized in an operational analysis model:

• End users missions, activities, real-
life situations and operational
scenarios are defined in an
operational analysis model; other
stakeholders involved in system
exploitation are also identified
Example of users: pilot crew, but
also air traffic management, airline
operations, maintenance teams…
Example of activities: ‘localize
aircraft’, ‘monitor traffic’, ‘monitor
primary parameters’…
Example of operational scenario or
process: in case of imminent risk of
collision, the pilot changes aircraft
altitude according to a predefined
procedure, shared with other aircraft

• Here again, non-functional
constraints are allocated to model
elements
Example: the feared event “both
aircraft climb or descend” is
identified and tagged as
‘catastrophic’

• Starting from this operational
analysis, some complementary
functions can be added to the former
functional analysis, based on
operational activities and scenarios;
they are allocated either to system or
users, and linked to the operational
analysis.

Checking Need validity and consistency
All three former need expression models

(operational, functional, requirements) are
related and confronted to each others, so as to

METHOD & TOOLS TO SECURE AND SUPPORT COLLABORATIVE ARCHITECTING OF CONSTRAINED
SYSTEMS

3

check consistency and completeness of need
analysis, using model analysis techniques &
tools.

Fig. 3. confronting Need models

F2

F1
F4

F5

F3

A1 A2

A2

Reqs

Operational Activities

Functions, dataFlows

Scenarios

Note that this approach and associated
models are an efficient means to support
collaboration between end users, customers, and
system provider teams, so that negotiation can
be more explicitly supported, and consequences
of need definition easily analyzed.

2.2 Architecture building and
verification

Functional analysis driving architecture
definition

Product architecture breakdown is built and
justified through allocation of functional need
items and scenarios, on architecture
components:

• requested system functions are
allocated to components, either by
grouping for consistency (e.g.
functional, operational, product line,
interface considerations), or by
segregating them into different
components (e.g. separating
functions with different safety or
security levels, performance issues).

• Interfaces and exchanges between
components are derived from
functional exchanges, therefore are
justifiable and checkable against
need.

This component definition is also driven by
multi-specialty engineering considerations.
Please refer to ‘Non functional constraints
management’ later in this document.

Fig. 4. Function to Component allocation

C3

F21

F1

F6

C2

F22

F3

C1

Functions, dataFlows

Components

Confronting Architecture & Design to Need
analysis

Once product architecture is defined and
modeled, it is confronted to all three need
models in order to check its compliance to all of
them:

• Requirements are automatically
allocated to components, thanks to
relationships with functions of these
components; if necessary, these
requirements may be refined to adapt
to component outline.

• component definition is built from
functional analysis, therefore correct
by construction with regards to this
functional model

• operational scenarios are allocated to
each component thanks to
operational model / functional model
justification links; this allows

Jean-Luc VOIRIN

4

checking component definition and
allocating scenarios to component
boundaries.

• this material is also the basis for
further integration and validation
activities and checks (e.g. reference
for expected behavior & properties).

Fig. 5. justifying architecture Vs Need

C3

F2

F1
F4

F5

F3

F21

F1

F6

C2
F22

A1 A2

A2

F3

C1

Scenarios

Reqs

This quick view of major ARCADIA steps
illustrates its first means to support
collaboration between need analysts, operational
users, architects and designers. Let us go further
now, inside engineering activities and
collaborations, for other aspects of this support.

3 Non functional constraints
management

The second benefit of Arcadia is related to

explicit formalization of non functional
constraints, and associated early verification
of the architecture against these constraints.

3.1 Dealing with non functional
concerns

The definition of a safety or mission
critical, real-time, embedded system has to
satisfy and preserve some crucial properties,
such as:

• Operational and Functional behavior
expectations as seen above (e.g.
functions & services to be supported by
the system, operational performances,
operational use cases)

• But also non-functional constraints,
whose a sample list might be

o Technical performance,
o availability and fault tolerance,
o integrity,
o security (confidentiality,

resistance to attacks),
o interface optimization,
o maintainability, testability,
o cost, weight, power

consumption,
o product policy,
o but also ease of integration, ease

of re-use, ease of extension…

Yet architecture, when designed only to

solve one of these constraints, is often
unsuitable to satisfy other expected properties
(e.g. design rules favoring integrity / availability
often lead to a degradation of performance and
cost); modifications in order to take into account
a given constraint may in turn bring bad
adequacy to other constraints.

At the end, the selected architecture often
appears far below expected operational
usability, because essential criteria of
satisfaction have been forgotten in front of
definition and development constraints.

The technical problem to be resolved thus

consists in facilitating a “multi-parameters”
optimization of the architecture under possibly
contradictory constraints, thus in bringing out an
acceptable compromise between these
constraints.

3.2 Adopting a Multi-Viewpoint
approach

In order to properly address these
constraints, ARCADIA adopts a viewpoint-
based architectural description, such as
described in standards [2].

In this context, a view is “a representation
of a whole system from the perspective of a

METHOD & TOOLS TO SECURE AND SUPPORT COLLABORATIVE ARCHITECTING OF CONSTRAINED
SYSTEMS

5

related set of concerns”, while “a viewpoint
defines how to construct and use a view”.

Each major engineering concern likely to

impact product definition and architecture
design (see sample list above) is subject to
viewpoint modeling: a dedicated viewpoint is
created for each concern, so as to

• collect constraints, expectations,
figures, related to the viewpoint, in
the need analysis described above

• define means to address these
constraints and design architecture to
fulfil them

• submit each candidate architecture to
these constraints, illustrating the way
the architecture is involved and deals
with these constraints

• define analysis rules to check that
the solution fits expectations for this
viewpoint.

Fig. 6. Multi-Viewpoint Architecture
Analysis

ViewPoints:

Solution Architecture

Functions

Safety

Security

Performance
Interfaces

IVVQ,

Product Line,
Cost…

Evaluation

Rules

Note that by this means, each stakeholder

will address its own dedicated viewpoint, and
confront it to others, in order to reach a
collaborative architecture design and
assessment.

3.3 Capturing non-functional need
& requirements

Non functional requirements are analyzed
and “translated” by decorating operational and
functional need models with expected non
functional properties, according to each
viewpoint.

• As an example, at operational need
level,

o safety requirements will be
composed of ‘feared events’
associated to activities and
exchanges between actors
involved in the target
mission

o performance requirements
will define expected reaction
time to a given threat
(detection between collision
risk detection and avoidance
maneuver)

• At system need analysis level,
o system behavior that might

lead to these feared events
(e.g. functional chains,
processing or display
functions…) will be tagged
according to the relevant
criticality,

o former reaction time will be
decomposed and allocated to
some system functional
chains in terms of maximum
acceptable latency.

3.4 Checking Architecture
candidates against non-
functional constraints

For each viewpoint, some architectural
patterns are applied to adapt architecture to
these non functional requirements: e.g.
redundancy paths, multi-processing, among
many others,

Thanks to the continuousness and mapping

of functional and non functional [need] models
on architecture definition, the resulting
architecture model can easily be analyzed in

Jean-Luc VOIRIN

6

order to check compliance with expected
properties.

E.g.
• Functional chains that are safety

critical can be checked against
redundancy issues (how many times
are they allocated to different
components in parallel?), common
modes (are underlying components
diverse or similar (thus introducing
common failures)?); failure
propagation and its functional
consequences can be studied and
simulated according to
dysfunctional behavior model of
components and functions (part of
the safety viewpoint)…

• Time critical functional chains and
processing implementation is tested,
so as to estimate their execution
time: thanks to functional
complexity evaluation, and
computing component resource
estimation, an estimate of their
latency can be computed, depending
on the means they have been
allocated to these execution
resources; same estimation can be
done on communication channels
depending on functional data
exchanges, etc.

Candidate product architectures are

therefore checked against all these viewpoints,
simultaneously, and at each step of architecture
building and assessment.

This is assisted by means of automated,
domain-dependent engineering rules
checking on models, and impact analysis of
each architecture design choice.

It is to be noted that by this way

• Each engineering specialty has
means to express not only its
constraints, but also its architecture
checking rules and solutions on the
single, common model

• And that possible mismatches with
its own golden rules will be
automatically tracked and can be

detected for each architecture design
decision, even if this design decision
is done by other stakeholders.

Fig. 7. Shared Architecture building &
validation

SharedShared
ArchitectureArchitects

Others…
Safety,
Performance,
… Engineers

Logistics
Engineers

SW/HW
Designers

& Developpers

IVVQ
Manager

4 Model-centric collaboration

A third advantage of Arcadia is the ability

of all stakeholders to share a unique
description of the product, its need and most
engineering assets described above; this is
achieved through the collective use of a single
reference model, that can be checked for
completeness and coherency, and allows an
efficient multi-user collaboration support and
impact analysis:

• customer needs and models are

captured and linked to product
definition, for safe and consistent
incorporation in the product

• architecture definition and first-level
behavioral models can be shared as
appropriate

• all stakeholders of system definition
and assessment can share the same
model and work together, while
checking the consistency of their
design decisions (through former
viewpoints)

• transition and consistency between
each engineering level (e.g.
system/sub-system/software or
hardware) is eased by automatic
model transformation, bi-directional
impact analysis

METHOD & TOOLS TO SECURE AND SUPPORT COLLABORATIVE ARCHITECTING OF CONSTRAINED
SYSTEMS

7

• sub-contracting is secured thanks to
technical contracts based on
architecture models

• integration and validation
verification tests can be specified
based on the need and product
models above, and their results can
be checked against these references

• finally, all the engineering data,
assets and justification material can
be efficiently capitalized and shared,
including domain-specific know-
how, reusable patterns and
architectures…

Examples of roles that should cooperate in

engineering can be (titles can vary)

SharedShared
Architecture

Product Line
Managers

Architects

Requirement
Managers

Others…
Safety,
Performance,
… Engineers

Logistics
Engineers

SW/HW
Designers

& Developpers

Customers

IVVQ
Manager

• Chief architect
• Customer
• Operational expert
• Functional analyst
• Systems engineering manager
• Specialty engineering expert
• System engineer
• IVVQ 1 manager
• Configuration manager
• Software/hardware specialists
• Sub-contractors
• Product line manager
• Program manager

Some kinds of collaboration between

engineering stakeholders, supported thanks to

1 IVVQ : Integration, Verification, Validation,
Qualification

model sharing, can be quickly illustrated as
follows: either both actors work collaboratively
on the same model, or one of them produces
entries in the model for the other one.

4.1 Customer – supplier
collaboration

Customer need analysis model is intended
to be built jointly between customer and
supplier: at least they can share the operational
view describing the end users goals, tasks and
activities, along with operational scenarios that
will be used for validation purpose.

Functional and non functional analysis can
also be submitted to customer, in order to
demonstrate how the system will meet
operational requirements.

Then the supplier sketches a first allocation
of functional analysis on an early architecture,
in order to check feasibility. Here again, in case
of some requirements being costly or complex
to fulfil, the model can help in defining
operational consequence of their modification or
cancellation.

In some cases, if the customer also has a

model-driven engineering, parts of the physical
architecture of the expected system can be
supplied as well, for larger scope validation (top
level system early integration) at customer level.

4.2 Need analysts – architecture
designers collaboration

Need analysts (operational experts,
functional analysts) define the basic functional
expectations on the system ; then the architects
allocate these functions on architecture
components, while preserving traceability and
justification links with need model.

This formalization of need, solution and
links relating them, is the basis for impact
analysis: when a new requirement comes, when
new functions are to be supported, these links
are used to determine which parts of the
architecture are to be modified, and under which
conditions, thus enabling cost & risk assessment
among others.

Jean-Luc VOIRIN

8

4.3 Specialty engineering experts –
chief architect collaboration

Specialty engineering experts deal with
concerns regarding a specific field, such as
safety, performance, interface management,
security, logistics & support, maintainability,
product line issues etc.

Most of them need to check architecture
design against their own constraints;
furthermore, in many cases, the architectural
design would take great benefit from
anticipating these constraints in an a priori
design, instead of an a posteriori compliance
check. And of course, if each one developed
his/her own model, this would lead to
discrepancies and rework.

All these expected features are achieved
and secured through ARCADIA single model
sharing. Three means to support this
collaboration are currently put in practice,
mainly through the viewpoint-driven approach
described above:

• Specialty-specific architectural
patterns can be put at disposal of the
architect in the model, in order to
fulfil non functional constraints (e.g.
safety barriers, multi-processing
patterns, middleware features…).

• Specialty-dedicated viewpoint rules
can be used to analyze and check the
architecture from one specialty point
of view, at each elementary design
decision, and even if the specialist is
not present (thanks to viewpoint rule
checking).

• The common model can also be used
to feed specialty-dedicated tools:
such as. quantitative simulation,
safety analysis (fault tree, minimal
cuts…) or 3D spatial layout. Possible
extensions and complementary
descriptions provided by these
dedicated tools are added to the
common model, so as to preserve
coherency and capability of round
trip.

4.4 System engineers - chief
architect collaboration

Model building and check can be split
between multiple users, depending on product
breakdown and enterprise organization. But
each develops or analyses only a part of a
common model, so as to ensure consistency and
uniqueness of product building.

Note that various kinds of work share can
be used: e.g. split by phase (operational
analysis, functional analysis, architecture), by
functional contents, by component, or by
viewpoint.

4.5 Supplier - Sub-contractor
collaboration

Requirements for suppliers of system
components (sub-systems, equipment, software,
hardware) are deduced from the physical
architecture model, based on allocation to the
components they are responsible for.

The architecture model allows to largely
enrich traditional requirements and interfaces
and turn them into a real “technical integration
contract”, with functional contents, expected
operational behavior (through operational
analysis and scenarios allocation), non
functional constraints allocation (resource
consumption, quality of service…), all these
information being deduced from the ARCADIA
model.

If each component respects this integration
contract, then the integration, verification and
validation (IVV) phase is likely to be easy and
straightforward.

4.6 System – software architects
collaboration

In the case of software components, the
integration contract can go further and turn into
a preliminary software architecture model,
defining expectations on software.

This can take the form of UML models,
delivering data model, components models,
sequence diagrams etc, that the software team
will refine, detail and organize into a software
architecture fully traceable and checkable
against the system-level physical architecture.

METHOD & TOOLS TO SECURE AND SUPPORT COLLABORATIVE ARCHITECTING OF CONSTRAINED
SYSTEMS

9

4.7 Integration/validation manager–
Architect collaboration

Contents and policy of the integration,
verification and validation (IVV) phase can
partly be defined based on architecture model:
e.g. the contents of each delivery can be
determined from desired operational
capabilities, activities; test cases can be derived
from operational scenarios; dependencies in
deliveries can be checked accordingly, and in
case of missed deadlines, consequences on
available functions can be determined easily.

5 ARCADIA supporting Tools

Arcadia supporting tools are crucial for

best benefit from the method, both because they
help in managing complexity and size of shared
information, and support collaboration between
stakeholders, along with early validation and
justification issues.

• they must allow and ease capitalizing
models, concepts, engineering rules
and architectural assets,

• while adapting to each domain for
specific extensions and enrichments.

• They also have to manage multi-user
issues (configuration management,
shared model access, intelligent
diff/merge…) so as to take real
benefit from the common reference
model.

5.1 Basic engineering support
features

In order to support model-driven
engineering activities, the toolset supporting
ARCADIA, named ORCHESTRA, running
over Eclipse (see [4]) delivers the following
common, widely spread functionalities:

• Modeling editor with enhanced
graphics / diagrams capability,
syntactic checking…

• Semantic model browser
• Model transformation & transition

support tools (for system to sub-
system, to software and to hardware

engineering transition)
• Model import/export means

(including towards excel, access and
dedicated specialty engineering
tools, product lifecycle management
and more)

• Requirement management tools
• Version and configuration

management tools, coupled with
model repository, data management

• Documentation generation tools
(from model)

• Link manager for model elements
and engineering assets, traceability
and impact analysis means

• Test & simulation support (for
models, including test scenarios
definition, run, analysis)

• …

Note that maximum proximity with state of

the art concepts have been preserved each time
it was possible, therefore allowing
interoperability with standards such as
Architecture Frameworks (see [5]), UML and
SysML (see [6]) and AADL (see [7]).

5.2 Method dependent extensions &
adaptation to dedicated domains

The heart of ARCADIA model-driven
approach in ORCHESTRA toolset is an
enhanced architecture modeler/checker called
MELODY ADVANCE.

Beyond basic modeling capabilities, many
features are necessary to achieve ARCADIA
benefits:

• modeling and complexity
management aids
e.g. complexity hiding, automatic
synthesis, automatic diagram
creation…

• ability to enrich and extend
ARCADIA basic concepts (so called
‘meta model’) for specific domains
and specialty engineering
e.g. safety concerns such as feared
event or development assurance
level, IVV versions, …

• ability to customize existing

Jean-Luc VOIRIN

10

diagrams and create new kinds of
diagrams (with a Domain Specific
language DSL) for dedicated
analysis
e.g. automatic impact analysis and
traceability support diagrams,
dependency diagrams…

• ability to define model analysis and
check rules, as needed for each
viewpoint
e.g. safety or performance
compliance checks

• multi-viewpoint compromise
analysis tools
e.g. rejection criteria if safety issues
are not preserved

• capitalization and reuse support
e.g. reuse libraries and checking
viewpoints, architectural patterns
management …

All these features developed for a given

specialty engineering, are packaged and
managed as a whole, in one or several viewpoint
support packages (e.g. safety viewpoint,
performance viewpoint, IVVQ, cost, reuse…
viewpoints).

5.3 Multi user collaboration support

Multi-user sharing is currently based on a
simple check-in / check out mechanism, each
user defining the model parts to be modified,
and then locking them until modification
completion.

This is applicable in case of partitioned,

tree oriented breakdown, but it appears that
architectural building and validation is not
necessarily of this kind: as an example, analysis
from one specialty engineering point of view is
hardly decomposable this way.

This is why an other way of collaboration

is being developed: it is based on live sharing of
one single model, and instantaneous, atomic
locking.

This greatly helps in reducing complex

model comparison (“diff and merge”) issues,

that are otherwise still necessary in order to
compare non-synchronized evolutions of
different stakeholders. These model comparison
functions will yet be enriched in order to better
identify evolution outline and intents, especially
for multi-branch management purpose.

6 Conclusion and future work

Arcadia is currently in use in Thales pilot

programs, and supported by Thales Orchestra
Tool suite.

The benefits already shown by these

experiments already appear to be:

• Less rework in design & production

thanks to Early validation of key
architectural aspects

• Efficient support to decision making
regarding complex but necessary
architectural trade-off

• Ability to capitalize both product
definition, know-how, and decision
making

• Support to negotiation and compromise

between stakeholders
• Support to interoperation with

Customers & Suppliers

• Ability to adjust modelling effort:
o scaled/focused on major

engineering issues for return on
invest

o Without exhaustive modeling.

Future work is split between adaptation to
each domain and viewpoint, as mentioned here
above, and tools & processes enhancement;
among others:

• in the near future, multi-user and
configuration/evolution enhanced
support; link with IVVQ phases (in
progress), transitions towards software
and hardware, application to hardware

• in the mid-term, architecture design aids
for solution emergence, modeling

METHOD & TOOLS TO SECURE AND SUPPORT COLLABORATIVE ARCHITECTING OF CONSTRAINED
SYSTEMS

11

automation aids, integration with
simulation…

7 References

[1] Method & Tools for constrained System
Architecting, Jean-Luc Voirin, at INCOSE’08
Symposium

[2] ISO/IEC 42010:2007 (also known as IEEE Std 1471–
2000) Systems and software engineering -
Recommended practice for architectural description
of software-intensive systems

[3] Méthode APTE, http://www.methode-
apte.com/methode_apte.htm

[4] Eclipse and EMF modelling technologies,
http://www.eclipse.org/modeling/emf/

[5] NATO C3 System Architecture Framework (NAF),
AC/322-D (2004)0041, NATO C3 Board, 2004

[6] Systems Modeling Language (SysML) Specification,
OMG document: ad/2006-03-01, 2006

[7] Guidelines and methods for conducting the safety
assessment process on civil airborne systems and
equipment, SAE ARP 4761, December 1996

8 8 Contact Author Email Address

jean-luc.voirin@fr.thalesgroup.com

9 Copyright Statement

The authors confirm that they, and/or their company or
organization, hold copyright on all of the original material
included in this paper. The authors also confirm that they
have obtained permission, from the copyright holder of
any third party material included in this paper, to publish
it as part of their paper. The authors confirm that they
give permission, or have obtained permission from the
copyright holder of this paper, for the publication and
distribution of this paper as part of the ICAS2010
proceedings or as individual off-prints from the
proceedings.

